Мікросхеми
Виробник: IR
Корпус: SO-20
Vcc, V: 10,4...12 V
Iвых, mA: 500 mA
Fosc, kHz: 44 kHz
К-сть каналів: 1
Примітка: PFC BALLAST CONTROL IC
Робоча температура, °С: -40…+125°C
Производитель LITE-ON INC. (LITE-ON)
Корпус DIP6
Тип входа DC
Тип выхода Транзистор
Количество каналов 1
Максимальный входной постоянный ток 60 мА
Максимальный выходной ток 0.1 А
Максимальное выходное напряжение 70 V
Коэффициент передачи тока (диапазон) min 100 %
Способ монтажа Пайка в отверстия
AY-3-8910 DIP
AY-3-8910 має наступні можливості:
Три програмованих генератора прямокутних імпульсів (тони), без можливості зміни шпаруватості сигналу - т. зв. Меандр
Один програмований генератор псевдо шуму з періодичністю 16 кб (128 kbps)
Один генератор огинаючої, що виробляє амплітудну модуляцію тони, шуму, або їх суміші, а також звучить сам по собі при виборі звукової частоти
Логічний мікшер (змішує вихід генераторів шуму і огинаючої з одним або декількома каналами тону)
Роздільні виходи звуку трьох каналів тони (можуть бути змішані як монофонічний, так і в стереофонічний сигнал)
Два порти вводу-виводу загального призначення
Програмоване посилення [2]>
AY-3-8910 являє собою кінцевий автомат, стан якого задається за допомогою шістнадцяти 8-розрядних регістрів. Вони програмуються через 8-розрядну зовнішню шину, яка використовується як для передачі даних, так і для завдання адреси регістра — режим перемикається зміною рівня на спеціальному виведення мікросхеми. Типовий цикл передачі значення: шина перемикається в режим завдання адреси, передається адреса, шина перемикається в режим передачі даних, що передаються дані.
Шість регістрів R0..R5 керують частотою звуку, що генерується трьома основними каналами, за допомогою визначення значення дільника вхідний тактової частоти. Дільник зберігається в двох 8-розрядних регістри для кожного з каналів, однак реальна розрядність лічильника-дільника — 12 розрядів, що дає 4095 варіантів значення частоти звуку (0 і 1 еквівалентні).
Регістр R6 задає 5-розрядне значення періоду для псевдослучайного генератора шуму.
Регистр R7 представляет собой логический микшер, содержащий по два бита для каждого канала, в зависимости от которых к каналам подмешивается сигнал генератора шума, либо генератор огибающей. Также в регистре R7 находятся два бита управления портами ввода-вывода общего назначения.
Три регистра R8..R10 управляют громкостью трёх основных каналов (16 уровней), а также имеют бит разрешения использования огибающей.
Три регистра R11..R13 управляют частотой (два регистра, 16-разрядное значение) и формой (один регистр, 16 вариантов) сигнала генератора ADSR-подобной огибающей. В отличие от большинства систем, 8910 использует фиксированные значения времени для фаз плато и затухания, и повторяющуюся последовательность фаз атаки и спада. Для примера, генератор может постоянно повторять цикл атаки-спада, или наоборот, начиная с максимального уровня, постепенно понижая его, без фазы атаки.
Регистры R14 и R15 управляют состоянием входных-выходных линий портов ввода-вывода общего назначения.
Назначение выводов микросхемы YM2149F соответствует AY-3-8910, за исключением вывода 26, который включает внутренний делитель входной частоты вдвое, если на него подан низкий уровень. Если этот вывод никуда не подключён, микросхема работает так же, как AY-3-8910.
YMZ284-D выполнена в 16-выводном корпусе (DIP16). YMZ284-M выполнена в 16-выводном корпусе (SOIC16). Функционально и программно полностью совместим с AY-3-8910, AY-3-8912 и AY-3-8913. Отличительная особенность — малое количество выводов, упрощенный интерфейс, моно аудиовыход.
Microchip AY38910A виконана в 40-вивідному корпусі (DIP40). Повністю сумісна з YAMAHA YM2149f.
Microchip AY8930. Сумісний з Microchip AY38910A. Може бути переключений в розширений режим: не 4, а 8-бітний тональний період, не 5 а 8-бітний шумовий період, шум генерується не жорстким LFSR-механізмом, а з додатковими програмованими AND і OR масками. Детальніше: https://wintexservice.kiev.ua/ua/p1228461621-mikroshema-8910a-dip.html
Am27C512 - это 512-Кбит, ультрафиолетовый стираемый программируемая память только для чтения. Он организован как 64K слов по 8 бит в слове, оперирует от одного +5 В питание, имеет статический режим ожидания и функции быстрого программирование местоположения одного адреса. Продукты доступны в оконных керамических DIP-упаковках, а также в виде пластиковых одноразовых программируемых (OTP) PDIP и Пакеты PLCC.
КМОП-технология AMD обеспечивает высокий уровень скорость, низкое энергопотребление и высокая помехоустойчивость. Типичный потребляемая мощность составляет всего 80 мВт в активном режиме, и 100 мкВт в режиме ожидания. Все сигналы имеют уровни TTL. Битовые местоположения могут быть запрограммированы по отдельности, в блоков, или наугад. Устройство поддерживает amd
КР580ВМ80А — 8-разрядный микропроцессор. Микросхема КР580ВМ80А — функционально законченный однокристальный микропроцессор с фиксированной системой команд, применяется в качестве центрального процессора в устройствах обработки данных и управления.
Микропроцессор имеет раздельные 16-разрядные шину адреса и 8-разрядную шину данных. Шина адреса обеспечивает прямую адресацию внешней памяти объёмом до 65536 байт, 256 устройств ввода и 256 устройств вывода.
Функциональный аналог микропроцессора Intel 8080A (1974 год). Также существовал более ранний вариант микропроцессора К580ИК80, выпускавшийся в 48-выводном корпусе.
Микропроцессор является основным элементом микропроцессорного комплекта серии КР580. Разработка Киевского НИИ микроприборов, руководитель направления — Кобылинский А. В.
Однокристальная 8-разрядная микро-ЭВМ без ПЗУ и предназначена для обработки цифровой обработки информации в вычислительной технике.
Мікропроцесор КР1816ВЕ35 є одним з продуктів, розроблених Київським науково-виробничим комбінатом "Електронмаш" (КНВК "Електронмаш") в колишньому СРСР. Цей мікропроцесор належить до родини КР1816ВЕ, яка використовувалась в різних пристроях та системах.
Основні характеристики мікропроцесора КР1816ВЕ35 можуть бути наступними:
Марка/виробник: Київський науково-виробничий комбінат "Електронмаш" (КНВК "Електронмаш")
Модель: КР1816ВЕ35
Архітектура: 16-бітна
Кількість ядер: 1 (одне ядро)
Шина даних: 16 біт
Шина адрес: 20 біт
Частота роботи: Зазвичай мікропроцесор КР1816ВЕ35 працює на частоті від 8 до 16 МГц, але може бути налаштований на інші значення.
Внутрішня пам'ять: Мікропроцесор КР1816ВЕ35 має внутрішню програмну пам'ять (ROM) з розміром від 16 до 64 КБайт, використовувану для зберігання програмного коду.
Внутрішня оперативна пам'ять: Мікропроцесор КР1816ВЕ35 має внутрішню оперативну пам'ять (RAM) з розміром від 512 байт до 4 КБайт, використовувану для зберігання змінних даних під час виконання програми.
Інтерфейси: Мікропроцесор КР1816ВЕ35 має певні вбудовані інтерфейси, такі як GPIO (загального призначення вводу/виводу) та інші, що дозволяють обмінюватися даними з іншими пристроями.
Зазначені характеристики можуть варіюватися в залежності від конфігурації та версії пристрою. Рекомендується ознайомитися з документацією, яка поставляється з пристроєм, або звернутися до виробника, КНВК "Електронмаш", для отримання докладної інформації.
Мікропроцесор КР1810ВМ86 є одним із продуктів, розроблених підприємством Київський науково-виробничий комбінат "Електронмаш" (КНВК "Електронмаш") в колишньому СРСР. Цей мікропроцесор належить до родини КР1810ВМ, яка була широко використовувана в різних пристроях та системах.
Основні характеристики мікропроцесора КР1810ВМ86 можуть бути наступними:
Марка/виробник: Київський науково-виробничий комбінат "Електронмаш" (КНВК "Електронмаш")
Модель: КР1810ВМ86
Архітектура: 8-бітна
Кількість ядер: 1 (одне ядро)
Шина даних: 8 біт
Шина адрес: 16 біт
Частота роботи: Зазвичай мікропроцесор КР1810ВМ86 працює на частоті від 3 до 8 МГц, але може бути налаштований на інші значення.
Внутрішня пам'ять: Мікропроцесор КР1810ВМ86 має внутрішню програмну пам'ять (ROM) з розміром від 8 до 32 КБайт, використовувану для зберігання програмного коду.
Внутрішня оперативна пам'ять: Мікропроцесор КР1810ВМ86 має внутрішню оперативну пам'ять (RAM) з розміром від 256 до 512 байт, використовувану для зберігання змінних даних під час виконання програми.
Інтерфейси: Мікропроцесор КР1810ВМ86 має певні вбудовані інтерфейси, такі як GPIO (загального призначення вводу/виводу) та інші, що дозволяють обмінюватися даними з іншими пристроями.
Це загальні характеристики, і конкретні можливості мікропроцесора КР1810ВМ86 можуть варіюватися в залежності від версії та конфігурації. Рекомендується ознайомитися з документацією, яка поставляється з пристроєм або звернутися до виробника, КНВК "Електронмаш", для отримання докладної інформації.
Входит в состав микропроцессорного комплекта серии КР1810, предназначенного для построения микро-ЭВМ.
Имеет 20-разрядную шину адреса, что позволяет обеспечить прямую адресацию 1 Мбайт внешней памяти. Область адресного пространства памяти разбита на сегменты по 64 КБ. Такая организация памяти обеспечивает более сложный механизм вычисления физических адресов по сравнению с линейным адресным пространством, однако позволила обеспечить легкую переносимость кода с 8-битных микропроцессоров предыдущих поколений (Intel 8080 и его советский аналог КР580ВМ80А). Шина адреса и шина данных мультиплексированы. При организации вычислительных систем их нужно разделить (регистры-защёлки). Микропроцессор может обращаться как к памяти, так и ко внешним устройствам.
При обращении ко внешним устройствам используются 16 младших линий шины адреса. Следовательно, можно подключить 64 К 8-битных внешних устройств либо 32 К 16-разрядных. Микропроцессор имеет многоуровневую систему прерываний: 256 векторов прерываний.
Мікропроцесор Zilog Z0840004PSC є одним із продуктів компанії Zilog, спеціалізованої на розробці мікроконтролерів та мікропроцесорів. Основні характеристики мікропроцесора Zilog Z0840004PSC можуть бути наступними:
Марка/виробник: Zilog
Модель: Z0840004PSC
Архітектура: 8-бітна
Кількість ядер: 1 (одне ядро)
Шина даних: 8 біт
Шина адрес: 16 біт
Частота роботи: Мікропроцесор Zilog Z0840004PSC зазвичай працює на частоті від 2 до 6 МГц, але може бути налаштований на інші значення.
Внутрішня пам'ять: Мікропроцесор Z0840004PSC має внутрішню програмну пам'ять (ROM) з розміром від 1K до 4K байт, яка використовується для зберігання програмного коду.
Внутрішня оперативна пам'ять: Мікропроцесор Z0840004PSC може мати внутрішню оперативну пам'ять (RAM) з розміром від 128 до 256 байт, використовувану для зберігання змінних даних під час виконання програми.
Інтерфейси: Мікропроцесор Zilog Z0840004PSC може мати різні вбудовані інтерфейси, такі як GPIO (загального призначення вводу/виводу), таймери/лічильники, UART (універсальний асинхронний приймач-передавач), SPI (послідовний пристрій) та інші.
Це лише загальні характеристики, і конкретні можливості мікропроцесора Zilog Z0840004PSC можуть варіюватися залежно від версії та конфігурації пристрою.
Мікроконтролер STC 89C53RC є частиною сімейства мікроконтролерів STC89C5x, розроблених компанією STC Microelectronics. Основні характеристики мікроконтролера STC 89C53RC можуть бути наступними:
Марка/виробник: STC Microelectronics
Модель: STC 89C53RC
Архітектура: 8051 (заснована на архітектурі Intel 8051)
Розмір пам'яті: Мікроконтролер STC 89C53RC зазвичай має 8 КБ внутрішньої програмної пам'яті (Flash) для зберігання програмного коду і 256 байт внутрішньої оперативної пам'яті (RAM) для зберігання змінних даних.
Інтерфейси: Мікроконтролер STC 89C53RC може мати різні інтерфейси, включаючи GPIO (загального призначення вводу/виводу), UART (універсальний асинхронний приймач-передавач), SPI (послідовний пристрій), I2C (шина зв'язку) та інші, що дозволяють обмінюватися даними з іншими пристроями.
Таймери/лічильники: Мікроконтролер STC 89C53RC може мати вбудовані таймери/лічильники для здійснення різних вимірювань часу та генерації затримок.
АЦП: Деякі варіанти мікроконтролера STC 89C53RC можуть мати вбудований аналого-цифровий перетворювач (АЦП), який дозволяє зчитувати аналогові сигнали та перетворювати їх у цифровий формат.
Ці характеристики можуть варіюватися залежно від конкретної моделі мікроконтролера STC 89C53RC. Рекомендується перевірити документацію, яка поставляється з пристроєм або звернутися до офіційного виробника STC Microelectronics для отримання докладнішої інформації про цей мікроконтролер.
Микросхемы К155ТМ5, КМ155ТМ5 (7477) и К155ТМ7, КМ155ТМ7 функционально идентичны, так как обе содержат по две пары D-триггеров. Микросхемы представляют собой простейшие защелки данник по 2 бита. Микросхемы различаются по числу выводов корпуса: микросхемы К155ТМ5 , КМ155ТМ5 (7477) расположены в 14-контактном корпусе, поэтомУ каждый ee триггер имеет только один прямой выход данных Q. Структурная схема одного D-триггера показана на рисунке. Каждая парa триггера имеет вход разрешения загрузки Е11.2 и Е13.4. Когда на такой вход разрешения подается напряжение высокого уровня, данные, присутствующие на входах D, без изменения отображается на выходе Q.
В защелке будет зафиксирована, (по другому, в ячёйку памяти будет загружена) информация, присутствующая на входе D, если состояние входа Е1 переключить от высокого уровня к низкому. Выход Q находится в текущем состоянии q все время, пока напряжение на входе Е1 остаётся низкого уровня. В таблице обозначёно: q — состояние выхода Q перед приходом защелкивающего перепада на вход Е1(от В к Н). При EI = Н состояние входа D безразлично D = х (т.е. на этом входе могут присутствовать или не присутствовать любые входные уровни).Корпус микросхемы К155ТМ5 (7477) типа 201.14-2, масса около 1 грамма и у КМ155ТМ5 (7477) типа 201.14-8, масса около 2,2 грамма.
Зарубежным аналогом микросхем К155ТМ5, КМ155ТМ5 являются микросхемы 7477, SN7477N, SN7477J.
Микросхемы К155ТМ5, КМ155ТМ5 (7477) и К155ТМ7, КМ155ТМ7 функционально идентичны, так как обе содержат по две пары D-триггеров. Микросхемы представляют собой простейшие защелки данник по 2 бита. Микросхемы различаются по числу выводов корпуса: микросхемы К155ТМ5 , КМ155ТМ5 (7477) расположены в 14-контактном корпусе, поэтомУ каждый ee триггер имеет только один прямой выход данных Q. Структурная схема одного D-триггера показана на рисунке. Каждая парa триггера имеет вход разрешения загрузки Е11.2 и Е13.4. Когда на такой вход разрешения подается напряжение высокого уровня, данные, присутствующие на входах D, без изменения отображается на выходе Q.
В защелке будет зафиксирована, (по другому, в ячёйку памяти будет загружена) информация, присутствующая на входе D, если состояние входа Е1 переключить от высокого уровня к низкому. Выход Q находится в текущем состоянии q все время, пока напряжение на входе Е1 остаётся низкого уровня. В таблице обозначёно: q — состояние выхода Q перед приходом защелкивающего перепада на вход Е1(от В к Н). При EI = Н состояние входа D безразлично D = х (т.е. на этом входе могут присутствовать или не присутствовать любые входные уровни).Корпус микросхемы К155ТМ5 (7477) типа 201.14-2, масса около 1 грамма и у КМ155ТМ5 (7477) типа 201.14-8, масса около 2,2 грамма.
Зарубежным аналогом микросхем К155ТМ5, КМ155ТМ5 являются микросхемы 7477, SN7477N, SN7477J.
Интегральная микросхема серии ТТЛ.
Микросхемы КМ155ПР7 представляют собой преобразователь двоичного кода в двоично-десятичный.
Содержат 640 интегральных элементов.
Корпус типа 238.16-2, масса не более 2 г.
Предельно допустимые режимы эксплуатации:
- Напряжение питания .......... 4,75 - 5,25 В
- Входное напряжение низкого уровня .......... < 0,4 В
- Входное напряжение высокого уровня .......... > 2,4 В
- Входной ток низкого уровня .......... < 16 мА
- Выходной ток высокого уровня .......... < -0,8 мА
- Емкость нагрузки .......... < 15 пФ
- Длительность фронта и среза входного импульса < 150 нс
- Температура окружающей среды:
- К155 .......... -10 + 70 °С
- КМ155 ......... - 45 + 85 °С
4 логических элемента 2ИЛИ-НЕ.
Микросхемы КМ155ЛА7 представляют собой 2 логических элемента 4И-НЕ с открытым коллекторным выходом и большим коэффициентом разветвления по выходу (элемент индикации).
Интегральная микросхема серии ТТЛ.
Микросхемы КМ155ЛА6 представляют собой 2 логических элемента 4И-НЕ с большим коэффициентом разветвления по выходу.
Содержат 34 интегральных элемента.
Корпус типа 201.14-1, масса не более 1 г.
Предельно допустимые режимы эксплуатации КМ155ЛА6:
- Напряжение питания .......... 4,75 - 5,25 В
- Входное напряжение низкого уровня .......... < 0,4 В
- Входное напряжение высокого уровня .......... > 2,4 В
- Входной ток низкого уровня .......... < 16 мА
- Выходной ток высокого уровня .......... < -0,8 мА
- Емкость нагрузки .......... < 15 пФ
- Длительность фронта и среза входного импульса < 150 нс
- Температура окружающей среды:
- К155 .......... -10 + 70 °С
- КМ155 ......... - 45 + 85 °С
Микросхемы КМ155ЛА3 представляют собой 4 логических элемента 2И-НЕ.
Содержат 56 интегральных элементов.
Корпус типа 201.14-1, масса не более 1 г.
Предельно допустимые режимы эксплуатации К155ЛА3:
- Напряжение питания .......... 4,75 - 5,25 В
- Входное напряжение низкого уровня .......... < 0,4 В
- Входное напряжение высокого уровня .......... > 2,4 В
- Входной ток низкого уровня .......... < 16 мА
- Выходной ток высокого уровня .......... < -0,8 мА
- Емкость нагрузки .......... < 15 пФ
- Длительность фронта и среза входного импульса < 150 нс
- Температура окружающей среды:
- К155 .......... -10 + 70 °С
- КМ155 ......... - 45 + 85 °С
Логический элемент 8И-НЕ.
Микросхемы КМ155КП5 представляют собой селектор-мультиплексор данных на 8 каналов.
Микросхема КМ155КП2 представлет собой сдвоенный цифровой селектор-мультиплексор 4-1.
Микросхемы К155ИЕ6, КМ155ИЕ6(74192) и К155ИЕ7, КМ155ИЕ7 (74193) — четырехразрядные реверсивные счетчики, аналогичные по структуре. Микросхема К155ИЕ6, КМ155ИЕ6 (74192) двоично-десятичный счетчик, а микросхема К155ИЕ7, КМ155ИЕ7 — двоичный счётчик. Внутреннюю схему счетчиков К155ИЕ6, КМ155ИЕ6 (74192) и К155ИЕ7, КМ155ИЕ7 (74193) можно изучить по рисунку. На следующем рисунке показана цоколевка счетчиков КМ155ИЕ6 (74192) и К155ИЕ7 (74193). Импульсные тактовые входы для счета на увеличение СU, (вывод 5) и. на уменьшение СD (вывод 4) в этих микросхемах раздельные. Состояние счетчика меняется по положительным перепадам тактовых импульсов от низкого уровня к высокому на каждом из этих тактовых входов.
Для упрощения построения счетчиков с числом разрядов, превышающим четыре,обе микросхемы имеют выводы окончания счета на увеличение (TCU вывод 12) и на уменьшение (TCD, вывод 13). От этих выводов берутся тактовые сигналы переноса и заёма для последующего и от предыдущего четырехразрядного счетчика. Дополнительной логики при последовательном соединении этих счетчиков не требуется: выводы TCU и TCD предыдущей микросхемы присоединяются к выводам СU и TCD последующей. По входам разрешения - параллельной загрузки PE и сброса R запрещается действие тактовой последовательности и даются команды загрузки четырехразрядного кода в счетчик или его сброса.
В микросхемах К155ИЕ6, КМ155ИЕ6 (74192) и К155ИЕ7, КМ155ИЕ7 (74193) счетчики основаны на четырех двухступенчатых триггерах "мастер-помощник". Десятичный счётчик отличается от двоичного внутренней логикой, управляющей триггерами. Счетчики можно переводить в режимы сброса, параллельной загрузки, а также синхронного счета на увеличение и уменьшение.
Если на вход СD подается импульсный перепад от низкого уровня к высокому (дается команда на уменьшение — down), от содержимого счетчика вычитается 1. Аналогичный перепад, поданный на входе СU, увеличивает (up)счет на 1. Если для счета используется один из этих входов, на другом тактовом входе следует зафиксировать напряжение высокого логического уровня. Первый триггер счетчика не может переключиться, если на его тактовом входе зафиксировано напряжение низкого уровня. Во избежание ошибок менять направление счета следует в моменты, когда запускающий, тактовый импульс перешел на высокий уровень, т. е. во время плоской вершины импульса.
На выходах TCU (окончание счета на увеличение, вывод 12) и TCD (окончание счета на уменьшение, вывод 13) нормальный уровень вывод 13)нормальный уровень - высокий. Если счет достиг максимума (цифра 9 для К155ИЕ6 (74192) и 15 для К155ИЕ7 (74193)), с приходом следующего тактового перепада на вход СU от высокого уровня к низкому (более 9 или более 15) на выходе TCU появится низкое напряжение. После возврата напряжения на тактовом вхооде СU к высокому уровне Напряжение на выходе TCD останется низким еще на время соответствующее двойной задержке переключения логического элемента ТТЛ.
Аналогично на выходе TCD появляется напряжение низкого уровня, если на вход СD пришел счетный перепад низкого уровня. Импульсные перепады от выходов TCU TCD служат, таким образом, как тактовые для последующих входов СU и СD при конструировании счетчиков более высокого порядка. Такие многокаскадные соединения счетчиков К155ИЕ6 (74192) и К155ИЕ7 (74193) не полностью синхронные, поскольку на последующую микросхему тактовый импульс передается с двойной задержкой переключения.
Если на вход разрешения параллельной загрузки PE (вывод 11) подать напряжение низкого уровня, то код, зафиксированный ранее на параллельных входах D0 — D3 (выводы 15, 1, 10 и 9), загружается в счетчик и появляется на его выходах Q0 — Q3 (выводы 3, 2, 6 и 7) независимо от сигналов на тактовых входах. Следовательно, операция параллельной загрузки — асинхронная.
Параллельный запуск триггеров запрещается, если на вход сброса R (вывод 14) подано напряжение высокого уровня. На всех выходах Q установится низкий уровень. Если во время (и после) операций сброса и загрузки придет тактовый перепад (от Н к В), микросхема примет его как счётный,
Счётчики К155ИЕ6 (74192) и К155ИЕ7 (74193) потребляют ток 102 мА. Маломощные варианты этих микросхем с переходами Шотки имеют ток потребления 34 мА. Максимальная тактовая частота 25 МГц; время задержки распространения сигнала от входа СU до выхода TCU 26 нс, аналогичные задержки от входа PE до выхода Q3 составляют 40 нс. Время действия сигнала сброса (от входа R до выходов Q) 35 нс.
На рисунке показана диаграмма работы десятичного счётчика К155ИЕ6, КМ155ИЕ6, где обозначены логические переходы сигналов при счете на увеличение и уменьшение. Кольцевой счет возможен в пределах 0...9, остальные шесть состояний триггерам запрещены. Кольцо счета для двоичного счетчика К155ИЕ7, КМ155ИЕ7 (74193) согласно рисунка внутренних запретов не имеет. Составив определенную комбинацию входных сигналов, по таблице можно выбрать один из четырех режимов работы счетчика К155ИЕ6 (74192). Счет наувеличение здесь закончится при выходном коде ВННВ (9), уменьшение — при НННН (О). Аналогичные операции со счетчиком К155ИЕ7 можно посмотреть по таблице. Окончанию счета на увеличение здесь соответствует код ВВВВ (15), а на уменьшение — НННН (О).
Микросхемы К155ИЕ6, КМ155ИЕ6(74192) и К155ИЕ7, КМ155ИЕ7 (74193) — четырехразрядные реверсивные счетчики, аналогичные по структуре. Микросхема К155ИЕ6, КМ155ИЕ6 (74192) двоично-десятичный счетчик, а микросхема К155ИЕ7, КМ155ИЕ7 — двоичный счётчик. Внутреннюю схему счетчиков К155ИЕ6, КМ155ИЕ6 (74192) и К155ИЕ7, КМ155ИЕ7 (74193) можно изучить по рисунку. На следующем рисунке показана цоколевка счетчиков КМ155ИЕ6 (74192) и К155ИЕ7 (74193). Импульсные тактовые входы для счета на увеличение СU, (вывод 5) и. на уменьшение СD (вывод 4) в этих микросхемах раздельные. Состояние счетчика меняется по положительным перепадам тактовых импульсов от низкого уровня к высокому на каждом из этих тактовых входов.
Для упрощения построения счетчиков с числом разрядов, превышающим четыре,обе микросхемы имеют выводы окончания счета на увеличение (TCU вывод 12) и на уменьшение (TCD, вывод 13). От этих выводов берутся тактовые сигналы переноса и заёма для последующего и от предыдущего четырехразрядного счетчика. Дополнительной логики при последовательном соединении этих счетчиков не требуется: выводы TCU и TCD предыдущей микросхемы присоединяются к выводам СU и TCD последующей. По входам разрешения - параллельной загрузки PE и сброса R запрещается действие тактовой последовательности и даются команды загрузки четырехразрядного кода в счетчик или его сброса.
В микросхемах К155ИЕ6, КМ155ИЕ6 (74192) и К155ИЕ7, КМ155ИЕ7 (74193) счетчики основаны на четырех двухступенчатых триггерах "мастер-помощник". Десятичный счётчик отличается от двоичного внутренней логикой, управляющей триггерами. Счетчики можно переводить в режимы сброса, параллельной загрузки, а также синхронного счета на увеличение и уменьшение.
Если на вход СD подается импульсный перепад от низкого уровня к высокому (дается команда на уменьшение — down), от содержимого счетчика вычитается 1. Аналогичный перепад, поданный на входе СU, увеличивает (up)счет на 1. Если для счета используется один из этих входов, на другом тактовом входе следует зафиксировать напряжение высокого логического уровня. Первый триггер счетчика не может переключиться, если на его тактовом входе зафиксировано напряжение низкого уровня. Во избежание ошибок менять направление счета следует в моменты, когда запускающий, тактовый импульс перешел на высокий уровень, т. е. во время плоской вершины импульса.
На выходах TCU (окончание счета на увеличение, вывод 12) и TCD (окончание счета на уменьшение, вывод 13) нормальный уровень вывод 13)нормальный уровень - высокий. Если счет достиг максимума (цифра 9 для К155ИЕ6 (74192) и 15 для К155ИЕ7 (74193)), с приходом следующего тактового перепада на вход СU от высокого уровня к низкому (более 9 или более 15) на выходе TCU появится низкое напряжение. После возврата напряжения на тактовом вхооде СU к высокому уровне Напряжение на выходе TCD останется низким еще на время соответствующее двойной задержке переключения логического элемента ТТЛ.
Аналогично на выходе TCD появляется напряжение низкого уровня, если на вход СD пришел счетный перепад низкого уровня. Импульсные перепады от выходов TCU TCD служат, таким образом, как тактовые для последующих входов СU и СD при конструировании счетчиков более высокого порядка. Такие многокаскадные соединения счетчиков К155ИЕ6 (74192) и К155ИЕ7 (74193) не полностью синхронные, поскольку на последующую микросхему тактовый импульс передается с двойной задержкой переключения.
Если на вход разрешения параллельной загрузки PE (вывод 11) подать напряжение низкого уровня, то код, зафиксированный ранее на параллельных входах D0 — D3 (выводы 15, 1, 10 и 9), загружается в счетчик и появляется на его выходах Q0 — Q3 (выводы 3, 2, 6 и 7) независимо от сигналов на тактовых входах. Следовательно, операция параллельной загрузки — асинхронная.
Параллельный запуск триггеров запрещается, если на вход сброса R (вывод 14) подано напряжение высокого уровня. На всех выходах Q установится низкий уровень. Если во время (и после) операций сброса и загрузки придет тактовый перепад (от Н к В), микросхема примет его как счётный,
Счётчики К155ИЕ6 (74192) и К155ИЕ7 (74193) потребляют ток 102 мА. Маломощные варианты этих микросхем с переходами Шотки имеют ток потребления 34 мА. Максимальная тактовая частота 25 МГц; время задержки распространения сигнала от входа СU до выхода TCU 26 нс, аналогичные задержки от входа PE до выхода Q3 составляют 40 нс. Время действия сигнала сброса (от входа R до выходов Q) 35 нс.
На рисунке показана диаграмма работы десятичного счётчика К155ИЕ6, КМ155ИЕ6, где обозначены логические переходы сигналов при счете на увеличение и уменьшение. Кольцевой счет возможен в пределах 0...9, остальные шесть состояний триггерам запрещены. Кольцо счета для двоичного счетчика К155ИЕ7, КМ155ИЕ7 (74193) согласно рисунка внутренних запретов не имеет. Составив определенную комбинацию входных сигналов, по таблице можно выбрать один из четырех режимов работы счетчика К155ИЕ6 (74192). Счет наувеличение здесь закончится при выходном коде ВННВ (9), уменьшение — при НННН (О). Аналогичные операции со счетчиком К155ИЕ7 можно посмотреть по таблице. Окончанию счета на увеличение здесь соответствует код ВВВВ (15), а на уменьшение — НННН (О).
Микросхема К155ИЕ5, КМ155ИЕ5 (7493), как и предыдущие, является четырехразрядным, асинхронным счетчиком пульсаций. Его структурная-схема и цоколевка,показаны на рисунках. Счетчик К155ИЕ5, КМ155ИЕ5 (7493) имеет две части: делитель на 2 (выход QO;,тактовый вход C0) и делитель на восемь,(выходы Q1 — Q3; тактовый вход C1). Режим работы счетчика ИЕ5 выбирается по таблице.
Если микросхема К155ИЕ5, КМ155ИЕ5 (7493) применяется как счетчик-делитель на 16, необходимо соединить выводы 1 и 12. При этом последовательность счета от О до 15 (т. е. последовательность смены логических уровней на выходах Q0 — Q3) будет соответствовать таблице. Другие особенности применения счетчика К155ИЕ5 соответствуют микросхемам ИЕ2 и ИЕ4. Микросхема К155ИЕ5 (аналог 7493) потребляет ток питании 53 мА и работает с тактовой частотой 10 МГц. Счетчик 74LS93 потребляет ток 15 мА, по входу СО максимальная частота до 10 МГц и по входу C1 32 МГц.
Микросхема К155ИЕ4, КМ155ИЕ4 (7492) — четырехразрядный двоичный счетчик-делитель на 2, на 6 и на 12. Внутренняя схема его и цоколевка показаны - рисунке. Счетчик К155ИЕ4 КМ155ИЕ4 (7492) состоит из двух независимых делителей. Если тактовая последовательность с частотой f подана, на вход C1 (вывод, 14), на выходе Q0 (вывод 12) получим меандр с частотой f/2. Последовательность с частотой f на тактовом входе C1 . (вывод 1) запускает делитель на 6, и меандр с частотой. f/6 появляется на выходе Q3 (вывод 8). При этом на выводах 11 и 9 имеются сигналы с частотой f/З (выходы Ql и Q2). На выводы, Rl и R2 подакугся команды сброса.
Чтобы построить счетчик с модулем деления 12, требуется соединить делители на 2 и на 6, замкнув выводы 12 и 1. На вход C0 дается входная частота f, на выходе Q3 получается последовательность симметричных,прямоугольных импульсов с частотой f/12. Тактовые запускающие перепады для счетчика К155ИЕ4 КМ155ИЕ4 (7492) — отрицательные, от высокого уровня к низкому. Режим работы счетчика К155ИЕ4, КМ155ИЕ4 (7492) и последовательность смены выходных уровней при счете от 0 до 11 можно выбрать из таблиц.
Счетчик К155ИЕ4 и КМ155ИЕ4 зарубежный аналог 7492 потребляет ток питания 51 мА и работает с тактовой частотой 10 МГц. Для исполнения 74LS92 ток потребления 15 мА, максимальная частота до 10 МГц.
Микросхемы К155ЛА3 представляют собой 4 логических элемента 2И-НЕ.
Содержат 56 интегральных элементов.
Корпус типа 201.14-1, масса не более 1 г.
Предельно допустимые режимы эксплуатации К155ЛА3:
- Напряжение питания .......... 4,75 - 5,25 В
- Входное напряжение низкого уровня .......... < 0,4 В
- Входное напряжение высокого уровня .......... > 2,4 В
- Входной ток низкого уровня .......... < 16 мА
- Выходной ток высокого уровня .......... < -0,8 мА
- Емкость нагрузки .......... < 15 пФ
- Длительность фронта и среза входного импульса < 150 нс
- Температура окружающей среды:
- К155 .......... -10 + 70 °С
- КМ155 ......... - 45 + 85 °С
Микросхемы К155ЛА3 представляют собой 4 логических элемента 2И-НЕ.
Содержат 56 интегральных элементов.
Корпус типа 201.14-1, масса не более 1 г.
Предельно допустимые режимы эксплуатации К155ЛА3:
- Напряжение питания .......... 4,75 - 5,25 В
- Входное напряжение низкого уровня .......... < 0,4 В
- Входное напряжение высокого уровня .......... > 2,4 В
- Входной ток низкого уровня .......... < 16 мА
- Выходной ток высокого уровня .......... < -0,8 мА
- Емкость нагрузки .......... < 15 пФ
- Длительность фронта и среза входного импульса < 150 нс
- Температура окружающей среды:
- К155 .......... -10 + 70 °С
- КМ155 ......... - 45 + 85 °С